f2(a, a) -> f2(a, b)
f2(a, b) -> f2(s1(a), c)
f2(s1(X), c) -> f2(X, c)
f2(c, c) -> f2(a, a)
↳ QTRS
↳ DependencyPairsProof
f2(a, a) -> f2(a, b)
f2(a, b) -> f2(s1(a), c)
f2(s1(X), c) -> f2(X, c)
f2(c, c) -> f2(a, a)
F2(c, c) -> F2(a, a)
F2(s1(X), c) -> F2(X, c)
F2(a, b) -> F2(s1(a), c)
F2(a, a) -> F2(a, b)
f2(a, a) -> f2(a, b)
f2(a, b) -> f2(s1(a), c)
f2(s1(X), c) -> f2(X, c)
f2(c, c) -> f2(a, a)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
F2(c, c) -> F2(a, a)
F2(s1(X), c) -> F2(X, c)
F2(a, b) -> F2(s1(a), c)
F2(a, a) -> F2(a, b)
f2(a, a) -> f2(a, b)
f2(a, b) -> f2(s1(a), c)
f2(s1(X), c) -> f2(X, c)
f2(c, c) -> f2(a, a)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F2(c, c) -> F2(a, a)
Used ordering: Polynomial interpretation [21]:
F2(s1(X), c) -> F2(X, c)
F2(a, b) -> F2(s1(a), c)
F2(a, a) -> F2(a, b)
POL(F2(x1, x2)) = 2·x1
POL(a) = 0
POL(b) = 0
POL(c) = 2
POL(s1(x1)) = 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
F2(s1(X), c) -> F2(X, c)
F2(a, b) -> F2(s1(a), c)
F2(a, a) -> F2(a, b)
f2(a, a) -> f2(a, b)
f2(a, b) -> f2(s1(a), c)
f2(s1(X), c) -> f2(X, c)
f2(c, c) -> f2(a, a)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
F2(s1(X), c) -> F2(X, c)
f2(a, a) -> f2(a, b)
f2(a, b) -> f2(s1(a), c)
f2(s1(X), c) -> f2(X, c)
f2(c, c) -> f2(a, a)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F2(s1(X), c) -> F2(X, c)
POL(F2(x1, x2)) = x1
POL(c) = 0
POL(s1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
f2(a, a) -> f2(a, b)
f2(a, b) -> f2(s1(a), c)
f2(s1(X), c) -> f2(X, c)
f2(c, c) -> f2(a, a)